1. 100 hundred draws are made at random with replacement from a box of numbered tickets containing $9 \boxed{1}$ and 10 s .
(a) (2 pts) What is the expected percentage of 1 s in the sample?

Expected percentage $=$ percentage of 1 s in box $=\frac{9}{10} \times 100 \%=90 \%$
(b) (2 pts) What is the standard error (SE) for the percentage of 1 s in the sample? SE for the sample $\%=\frac{\sqrt{(\text { proportion of } \boxed{1})(\text { proportion of } \boxed{0})}}{\sqrt{\text { sample size }}} \times 100 \%=\frac{\sqrt{0.9 \cdot 0.1}}{\sqrt{100}} \times 100 \%=3 \%$
(c) (2 pts) What is the (approximate) probability that the sample percentage of 1 s is between 87% and 93% ? Why?
Sample percentages approximately follow the normal curve when n is big enough (which it is in this case), so

$$
P(87 \% \leq \text { sample } \% \leq 93 \%) \approx 68 \%
$$

because this is the probability that the sample \% falls in the range $E V(\%) \pm 1 \cdot S E(\%)$, which is approximately equal to the area under the normal curve from -1 to 1 .
2. A market research firm surveyed a simple random sample of 2500 households from a large metropolitan area of more than 500,000 households.
(a) (4 pts) Of the sample households, 1960 owned two or more computers. Use this data to construct a 95%-confidence interval for the percentage of all households in the metropolitan area who own two or more computers. Show your work.
A 95%-confidence interval for the percentage of all households who own two or more computers is given by (sample \%) $\pm 2 S E(\%)$. In this case, we have:
sample $\%=\frac{1960}{2500} \times 100 \%=78.4 \%$ and $S E(\%) \approx \frac{\sqrt{0.784 \times 0.216}}{\sqrt{2500}} \times 100 \% \approx 0.823 \%$
so $2 S E(\%) \approx 1.646 \%$ and the confidence interval is $(78.4 \% \pm 1.646 \%)$.
(b) (2 pts) The 2500 households in the sample included 4900 children age 6 or younger. Of these 4900 children, 2940 watched at least three hours of TV per day.
True or false, and explain (briefly): A 95\%-confidence interval for the percentage of all children age 6 or younger in the metropolitan area who watch at least three hours of TV per day is $60 \% \pm 1.4 \%$.
False. The sample \% of children age 6 or younger who watch at least three hours of TV daily is $(2940 / 4900) \times 100 \%=60 \%$ and $(\sqrt{0.6 \times 0.4} / \sqrt{4900}) \times 100 \% \approx 0.7 \% \ldots$ So, if this were a simple random sample of children then the confidence interval would be correct. But it isn't a simple random sample of children - it is a cluster sample, so the calculation is incorrect.
3. The average household income for all the households in the sample in the problem above was $\$ 48,500$ with an SD of $\$ 15,000$.
True or False, and justify your answer briefly:
(a) (2 pts) A 95\%-confidence interval for the average household income in the metropolitan area is about $\$ 48,500 \pm \$ 600$.
True. This is a simple random sample of households, the sample average is $\$ 48,500$ and the SE (for the average) is $15000 / \sqrt{2500}=\$ 300$, so the given confidence interval is correct (because $2 \times 300=600$).
(b) (2 pts) The chance is about 95% that the interval in (a) contains the average household income in the sample.
False. The chance is exactly 100% that the interval in (a) contains the average household income in the sample, because the sample average is the middle of the interval.
(c) (2 pts) About 95% of the households in the metropolitan area have incomes between $\$ 47,900$ and $\$ 49,100$.
False. The standard error (300 in this case) measures the variation between different sample averages, not between different household incomes. The variation in income between households is estimated by the sample $S D=15000$. Moreover, there is no reason to believe that household income in this region has a normal distribution.
(d) (2 pts) The chance is about 95% that the interval in (a) contains the average household income in the metropolitan area.
True. This is precisely how a 95\%-confidence interval for a population average is interpreted. More precisely, we expect that about 95% of all intervals constructed in this way will contain the population average and therefore any one of them (like the one in (a)) has a 95% chance of containing the population average.

