1. 400 hundred draws are made at random with replacement from a box of numbered tickets containing $2 \boxed{1} \mathrm{~s}$ and 80 s .
(a) (2 pts) What is the expected percentage of 1 s in the sample?

Expected percentage $=$ percentage of 1 s in box $=\frac{2}{10} \times 100 \%=20 \%$
(b) (2 pts) What is the standard error (SE) for the percentage of 1 s in the sample? SE for the sample $\%=\frac{\sqrt{(\text { proportion of } \boxed{1})(\text { proportion of } \boxed{0})}}{\sqrt{\text { sample size }}} \times 100 \%=\frac{\sqrt{0.2 \cdot 0.8}}{\sqrt{400}} \times 100 \%=2 \%$
(c) (2 pts) What is the (approximate) probability that the sample percentage of 1 s is between 16% and 24% ? Why?
Sample percentages approximately follow the normal curve when n is big enough (which it is in this case), so

$$
P(16 \% \leq \text { sample } \% \leq 24 \%) \approx 95 \%
$$

because this is the probability that the sample \% falls in the range $E V(\%) \pm 2 \cdot S E(\%)$, which is approximately equal to the area under the normal curve from -2 to 2 .
2. A market research firm surveyed a simple random sample of 3600 households from a large metropolitan area of more than 800,000 households.
(a) (4 pts) Of the sample households, 2160 owned two or more computers. Use this data to construct a 95%-confidence interval for the percentage of all households in the metropolitan area who own two or more computers. Show your work.
A 95%-confidence interval for the percentage of all households who own two or more computers is given by (sample \%) $\pm 2 S E(\%)$. In this case, we have:
sample $\%=\frac{2160}{3600} \times 100 \%=60 \%$ and $S E(\%) \approx \frac{\sqrt{0.6 \times 0.4}}{\sqrt{3600}} \times 100 \% \approx 0.816 \%$
so $2 S E(\%) \approx 1.632 \%$ and the confidence interval is $(60 \% \pm 1.632 \%)$.
(b) (2 pts) The 3600 households in the sample included 2500 children age 4 or younger. Of these 2500 children, 800 attended day care regularly.
True or false, and explain (briefly): A 95\%-confidence interval for the percentage of all children age 4 or younger in the metropolitan area who attend day care regularly is $32 \% \pm 1.87 \%$.
False. The sample \% of children age 4 or younger who who attend day care regularly is (800/2500) \times $100 \%=32 \%$ and $(\sqrt{0.32 \times 0.68} / \sqrt{2500}) \times 100 \% \approx 0.933 \% \ldots$ So, if this were a simple random sample of children then the confidence interval would be correct. But it isn't a simple random sample of children - it is a cluster sample, so the calculation is incorrect.
3. The average household income for all the households in the sample in the problem above was $\$ 52,000$ with an SD of $\$ 20,000$.
True or False, and justify your answer briefly:
(a) (2 pts) A 95\%-confidence interval for the average household income in the metropolitan area is about $\$ 52,000 \pm \$ 667$.
True. This is a simple random sample of households, the sample average is $\$ 52,000$ and the $S E$ (for the average) is $20000 / \sqrt{3600} \approx \$ 333.33$, so the given confidence interval is correct (because $2 \times 333.33=666.66 \approx 667$).
(b) (2 pts) The chance is about 95% that the interval in (a) contains the average household income in the metropolitan area.
True. This is precisely how a 95\%-confidence interval for a population average is interpreted. More precisely, we expect that about 95% of all intervals constructed in this way will contain the population average and therefore any one of them (like the one in (a)) has a 95\% chance of containing the population average.
(c) (2 pts) The chance is about 95% that the interval in (a) contains the average household income in the sample.
False. The chance is exactly 100% that the interval in (a) contains the average household income in the sample, because the sample average is the middle of the interval.
(d) (2 pts) About 95% of the households in the metropolitan area have incomes between $\$ 51,333$ and $\$ 52,667$.
False. The standard error (333.33 in this case) measures the variation between different sample averages, not between different household incomes. The variation in income between households is estimated by the sample $S D=20000$. Moreover, there is no reason to believe that household income in this region has a normal distribution.

