
(a) (3 pts) ... all 3 tickets are 2 s .

The probability of drawing a $\boxed{2}$ any one time is $\frac{1}{4}$, and since the three draws are independent...

$$
P(\sqrt{2} \sqrt[2]{2})=P(\sqrt{2}) \cdot P(\sqrt{2}) \cdot P(\boxed{2})=\left(\frac{1}{4}\right)^{3}=\frac{1}{64} \quad(=1.5625 \%) .
$$

(b) (3 pts) ... at least one of the 3 tickets is a 4 .

The probability of drawing at least one 4 is equal to 1 minus the probability of drawing no 4 s. The probability of not drawing a 4 s in one draw is $1 / 2$, so similar to above, the probability of drawing no 4 s in three draws is...

$$
P(n o \boxed{4} s)=\left(\frac{1}{2}\right)^{3}=\frac{1}{8} \quad(=12.5 \%)
$$

which means that the probability of drawing at least one $\boxed{4}$ in three draws is

$$
1-P(n o \boxed{4} s)=1-\frac{1}{8}=\frac{7}{8} \quad(=87.5 \%) .
$$

2. (6 pts) One ticket is drawn at random from each of the two boxes

$$
A \begin{array}{|l|l|l|l|}
\hline 1 & 2 & 2 & 4 \\
\hline
\end{array} \quad B \begin{array}{|l|l|l|}
\hline 1 & 2 & 3 \\
\hline
\end{array} .
$$

Find the probability that the number drawn from box A is smaller than the number drawn from box B.
There are a total of $16=4.4$ possible pairs of tickets that can be drawn, with one from A and one from B. In exactly 7 of these 16 pairs is the A ticket smaller than the B ticket:

$$
(A 1, B 2),(A 1, B 3),(A 1, B 4),(A 2, B 3),(A 2, B 3),(A 2, B 4) \text { and }(A 2, B 4) .
$$

So the probability that the A ticket is smaller than the B ticket is $\frac{7}{16}=43.75 \%$.
3. (4 pts) A box contains 100 tickets: $60 \square \mathrm{~s}$ and 400 s . Tickets are drawn from the box at random with replacement, and you win a dollar if more 1 s are drawn than 0 s. There are two choices:
(i) 10 draws are made from the box.
(ii) 100 draws are made from the box.

Which choice gives a better chance of winning that dollar, (i) or (ii), or do they both give the same chance of winning?
To win a dollar, we need more 1 s than 0 s, so we need the proportion of 1 to be more than 50%. According to the law of averages, the more tickets are drawn, the more likely it is that the proportion of 1 s drawn will be close to the proportion of 1 s in the box -60% in this case, which is more than 50%. This means that to win a dollar in this game, the more draws the better, so Choice (ii) is better.

4. 400 draws are made at random with replacement from the box | 1 | 3 | 4 | 5 | 7 |
| :--- | :--- | :--- | :--- | :--- |

(a) (2 pts) Find the expected value of the sum of the draws.

The expected value for the sum of 400 draws from this box is

$$
E V(\text { sum })=400 \times A v g(b o x)=400 \times \frac{1+3+4+5+7}{5}=1600
$$

(b) (2 pt) What is the probability that the observed sum of the draws is between 1520 and 1680 - about 43%, about 68% or about 95% ? Why?

The possible sums of 400 draws have an approximately normal distribution with average equal the the expected value and standard deviation equal to the standard error:

$$
S E(\text { sum })=\sqrt{400} \times S D(\text { box })=10 \times \sqrt{\frac{(1-4)^{2}+(3-4)^{2}+(4-4)^{2}+(5-4)^{2}+(7-4)^{2}}{5}}=40
$$

So the probability that the observed sum falls in the range 1520 to 1680 is the probability of the observed sum falling within two SEs of the EV (two SDs of average), which is approximately 95% because of the approximately normal distribution of the observable sums.

