Lines and linear functions: a refresher

- A straight line is the graph of a linear equation. These equations come in several forms, for example:

$$
\text { (i) } a x+b y=c, \quad(i i) y=y_{0}+m\left(x-x_{0}\right), \quad(i i i) y=m x+b \text {. }
$$

- The slope of a line is the ratio

$$
\frac{\text { rise }}{\text { run }}=\frac{\text { change in } y}{\text { change in } x}=\frac{y_{1}-y_{0}}{x_{1}-x_{0}}
$$

In equations (ii) and (iii) above, the slope is given by m.

- The slope (m) is the amount by which y changes if x changes by one unit. In other words:

$$
\overbrace{y-y_{0}}^{\text {change in }}=m \cdot \overbrace{\left(x-x_{0}\right)}^{=1}=m
$$

Another property of $r_{x y} \ldots$
(*) The correlation coefficient gives a measure of how the data is clustered around the SD-line.
(*) The SD-line is the line that passes through the point of averages (\bar{x}, \bar{y}) with slope $m= \pm \frac{S D_{y}}{S D_{x}}$.
\Rightarrow The slope is $\frac{S D_{y}}{S D_{x}}$ if $r \geq 0$.
\Rightarrow The slope is $-\frac{S D_{y}}{S D_{x}}$ if $r<0$.
(*) This is the line with equation: $y-\bar{y}= \pm \frac{S D_{y}}{S D_{x}}(x-\bar{x})$.
On this line, y increases (or decreases) by one $S D_{y}$ for every one $S D_{x}$ increase in x.
(*) Roughly speaking, the SD-line runs down the middle of the 'cloud' of points, (like the major axis in an ellipse).

Correlation and clustering around the SD-line
${ }^{(*)}$ Suppose that $\left(x_{j}, y_{j}\right)$ is a point in the scatter plot, and d_{j} is the vertical distance of this point from the SD-line.

The (vertical) clustering is quantified by $\sqrt{\frac{1}{n} \sum_{j} d_{j}^{2}}$.
(*) The R.M.S. of the vertical distances to the SD-line can be computed quickly in terms of the correlation coefficient:

$$
\sqrt{\frac{1}{n} \sum_{j} d_{j}^{2}}=\sqrt{2\left(1-\left|r_{x y}\right|\right)} \times S D_{y}
$$

The smaller this number is, the more tightly clustered the points are around the SD line.
$\left(^{*}\right)$ The closer $\left|r_{x y}\right|$ is to 1 , the more tightly clustered the data will be around the SD line. But this measure of clustering around the SD-line depends on both $r_{x y}$ and $S D_{y}$.
\Rightarrow Two sets of data can have the same correlation, even though one of them appears to be more tightly clustered around the SD line than the other, because of changes in scale (smaller standard deviations).

Figure 3. The effect of changing SDs. The two scatter diagrams have the same correlation coefficient of 0.70 . The top diagram looks more tightly clustered around the SD line because its SDs are smaller.

Given a set of paired data, we want:
A formula for predicting the (approximate) y-value of an observation with a given x-value.

What we can reasonably hope to find:
A formula for predicting the (approximate) average y-value for all observations having the same x-value.

First Guess: The SD-line.
$\left(^{*}\right)$ The SD line is a natural candidate and predicts the average y-value accurately when $x=\bar{x}$ (it predicts \bar{y}), but...
$\left(^{*}\right)$ As the observations move away from the point of averages, the points on the SD-line tend to lie above or below the average y-value that we are trying to estimate, and the further we move from the point of averages, the bigger the errors become.

${ }^{(*)}$ Hypothetical (cloud of) data with point of averages and the SD line.

${ }^{(*)}$ We want to estimate the average y-value of the points in each vertical strip (the red dots). But The SD line is underestimating the average in the strip to the left of the point of averages and overestimating the average of the strip to the right of the point of averages.

${ }^{(*)}$ Hypothetical (cloud of) data with graph of averages (red dots) and the SD line. The further the vertical strip is from the point of averages, the worse the SD line approximates the average height of the data in that strip.

We want to find the line that
(i) Passes through the point of averages.
(ii) Approximates the graph of averages as well as possible.

Question: What information is missing from the SD line?

Question: What information is missing from the $S D$ line?
Answer: The correlation between the variables!
$\left(^{*}\right)$ Taking correlation into account leads to the regression line.

- The regression line passes through the point of averages.
- The slope of the regression line (for y on x) is given by

$$
r_{x y} \cdot \frac{S D_{y}}{S D_{x}}
$$

- The regression line predicts that for every $S D_{x}$ change in x, there is an approximate $r_{x y} \cdot S D_{y}$ change in the average value of the corresponding $y \mathrm{~s}$.

Paired data and the relationship between the two variables (x and y) is summarized by the five statistics:

$$
\bar{x}, \quad S D_{x}, \quad \bar{y}, \quad S D_{y} \text { and } r_{x y} .
$$

Example: Regression of weight on height for women in Great Britain in 1951.

The summary statistics can be used to estimate the weights of women given information about their height.

Question: How much did 5 '6"-tall British women weigh in 1951 on average?

Answer: These women were 3 inches above average height. This is

$$
\frac{3}{2.7} \approx 1.11 S D_{h} \text { above average height. }
$$

The regression line predicts that on average, they would have weighed about

$$
0.32 \times 1.11 \approx 0.355 S D_{w} \text { above the average weight. }
$$

So, the average weight for these women would have been about

$$
132+0.355 \times 22.5 \approx 140 \mathrm{lbs}
$$

Question: By about how much did average weight increase for every 1 inch increase in height?

Answer: 1 inch represents

$$
\frac{1}{2.7} \approx 0.37 S D_{h}
$$

so each additional inch of height would have added about

$$
0.32 \times 0.37 \approx 0.1184 S D_{w}=0.1184 \times 22.5 \mathrm{lbs} \approx 2.66 \mathrm{lbs}
$$

to the average weight.

Example. A large (hypothetical) study of the effect of smoking on the cardiac health of men, involved 2709 men aged $25-45$, and obtained the following statistics,

$$
\bar{x}=17, S D_{x}=8, \bar{y}=129, S D_{y}=7, r_{x y}=0.64,
$$

where
${ }^{(*)} y_{j}=$ systolic blood pressure measured in mmHg of the $j^{\text {th }}$ subject
${ }^{(*)} x_{j}=$ number of cigarettes smoked per day by $j^{\text {th }}$ subject.
Question: What is the predicted average blood pressure of men in this age group who smoke 20 cigarettes per day?
Answer: 20 cigarettes is 3 cigarettes above average, which is $3 / 8 \cdot S D_{x}$ above average. The regression line predicts that the average blood pressure of men who smoke 20 cigarettes/day will be

$$
r_{x, y} \times\left(\frac{3}{8} \cdot S D_{y}\right)=0.64 \times\left(\frac{3}{8} \cdot 7\right) \approx 1.68
$$

mmHg above average - about 130.68 mmHg .

Question: John is a 31-year old man who smokes 30 cigarettes a day. What is John's predicted blood pressure.

Answer: Our best guess for John is the average blood pressure of men who smoke 30 cigarettes a day. Since 30 is $13=13 / 8 \times S D_{x}$ above \bar{x}, the regression line predicts that John's blood pressure will be about

$$
r_{x, y} \times\left(\frac{13}{8} \cdot S D_{y}\right)=0.64 \times\left(\frac{13}{8} \cdot 7\right) \approx 7.28
$$

mmHg above average - about 136.28 mmHg .
Question: How accurate is this estimate likely to be?
\Rightarrow What is the spread around $\hat{y}=136.28$ in the vertical strip corresponding to $x=30$?

