

Data histogram for a population.

$$mean = 70.003, \qquad SD = 2.8032.$$

Data histograms for four simple random samples of size 100:

Sample 1: Mean = 69.77, SD \approx 3.

Sample 2: Mean = 70.22, SD \approx 2.75.

Sample 3: Mean = 69.52, SD \approx 2.69.

Sample 4: Mean = 69.89, SD \approx 2.83.

Histogram for distribution of averages of 10,000 samples of size 100:

Mean= 70.0037, SD= 0.2797

Histogram for distribution of averages of 10,000 samples of size 400:

Mean= 70.0017, SD = 0.1376

Example 2:

Data histogram for another population

mean = 70.046, SD = 8.657 (why is the SD bigger?).

Data histograms for four simple random samples of size 400 taken from the uniform distribution above...

Sample 1: Mean = 70.72, SD ≈ 8.45

Sample 2: Mean = 70.67, SD \approx 9.03

Sample 3: Mean = 69.32, SD ≈ 8.57

Sample 4: Mean = 70.11, SD ≈ 8.76

Histogram for distribution of averages of 10,000 samples of size 400 (from the uniform distribution above):

Mean = 70.0056, SD = 0.4186