

Data histogram for a population.

$$
\text { mean }=70.003, \quad S D=2.8032
$$

Data histograms for four simple random samples of size 100:

Sample 1: Mean $=69.77, \mathrm{SD} \approx 3$.

Sample 2: Mean $=70.22, \mathrm{SD} \approx 2.75$.

Sample 3: Mean $=69.52, \mathrm{SD} \approx 2.69$.

Sample 4: Mean $=69.89, \mathrm{SD} \approx 2.83$.

Histogram for distribution of averages of 10,000 samples of size 100 :

Mean $=70.0037, \mathbf{S D}=0.2797$

Histogram for distribution of averages of 10,000 samples of size 400:

Mean $=70.0017, \mathbf{S D}=0.1376$

Example 2:

Data histogram for another population

mean $=70.046, S D=8.657$ (why is the $S D$ bigger?).

Data histograms for four simple random samples of size 400 taken from the uniform distribution above...

Sample 1: Mean $=70.72, \mathrm{SD} \approx 8.45$

Sample 2: Mean $=70.67$, SD ≈ 9.03

Sample 3: Mean $=69.32$, SD ≈ 8.57

Sample 4: Mean $=70.11, \mathrm{SD} \approx 8.76$

Histogram for distribution of averages of 10,000 samples of size 400 (from the uniform distribution above):

Mean $=70.0056, \mathbf{S D}=0.4186$

